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|  SUMURY +/{//é

The input conductance of an infinite antenna formed by a cylindrical tubular
conductor of internal impedance z1 is obtained, together with the ohmic loss and
the radiated power which contribute to the input conduétance. It is found that
the ohmic loss on the antenna behaves like 1/[103|l/z1|] for small zi. rather
than a small perturbation of order zi. Several conclusions may be drawn: (1)
The infinite antenna with zero internal impedance is of very different character
from that with non-vanishing zi, even when z1 is quite small; (2) The present
theory may be verified experigentally with an antenna of finite length provided
the internal impedance is not:too low; (3) In the theory of‘the very long
antenna the intnrnal‘impedance is not negligible for all practically available
metals. A brief qualitative discussion of the very long antenna is given to

indicate the need for further study on that subject.

INTRODUCTION
In the theory of the antenna as a bbundafy-value problem, the antenna has
usually been aséumed to be made of a perfect conductor since the conductivities
of practically available metals are very high. The current distribution and the
input admittance of an antenna made of metal are often obtained under the assump-
tion of infinite conductivity and the effect of the finite conductivity is often
regarded as a small perturbation. The perturbation is indeed small for a short
antenna. As the antenna becomes longer, or in the extreme when it is infinitely
long, the similarity between an antenna with infinite condictivity and that with

high but finite conductivity disappears. Since the current on the infinitely
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long antenna with infinite conductivity is not square integrable, perturbation
theory cannot be applied in a straightforward manner.

‘In order to see the effect of finite conductivity on long antennas, it
seems logical to try to study the infinite antenna,fifs,t° In this report
the‘inpug conductance of an infinitely long antenna formed by a cylindrical
tubular conductor of internal impedance-zi is obtained, together with the ohmic
loss and thevradiated power which contribute to the input conductance. It is
found that the ohmic loss on the antenna behaves like»l/[logll/zill for small

zi, rather than like a small perturbation of order zi°

THE SOLUTION
Let the radius of the infinitely long tubular antenna be a, the internal
impedance per unit length be zi. The following integral equation for the current

I(z) on the antenna holds [1l:

2 - -]
(-3-2-+ k?) fxc(z-z')x(z')dz' - “’g“‘ [6¢z) - 2zt 1(z)] (1)
dz — <]
where T KR
K(z) = %;- Jf de & R R= (z-z')2+ (2a sine/Z)2
-7

and z is the axial coordinate; % is the intrinsic impedance of free space,
and k is the free-space wave number. The time dependence is taken to be e'-i“’t
where w is the angular frequency of the driving source which is assumed to be a
delta-function generator of unit voltage.

Define

- - icz
I(z) = fl(z)e dz

then from (1)
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Z—Cz) Hgl)(aVQZ-;%)[Z], with branch cuts chosen as shown

In (2), Ek;) = wiJo(a k

in Fig. 1. The input conductance G which is defined as G = 1im Re I(z) is
z+0

readily obtained from (2) with the Fourier integral theorem:

1 4nik/g
C = o= '/he dc

2% i
& (k3-¢ )ni(J +HY )+ Amikz
0

4ﬂik/§
+2 fRe 7 4t (3)

K (z2-k2 )21 K + ATEKE doikz

%

In (3), the Bessel functions Jo and Yo have arguments a/ﬁz-;z and the modified
Bessel functions I° and Ko have arguments a/;z-kz.

The input conductance G can,be separated_ﬂnto three parts, namely,

= Gp * Gyp* Gys

where
1l 2, .2
4n (1-y )Jo dy 4m
“° 7, f [(1-y®)73% 2_1% [(QyD)1I ¥ - 212 Fo S
y o- R VY oo I

1
Gyp = aik f 7.2 dg 3 2 = ii'& I (4b)
0 [(1ey )nJo+ ZR] + [(1-y )onYo- ZI]- !
4z, a 4z
Cy3 = ;Rf & 7 = _5313 (4e)
°o 3 [(y -1)21 K + y/ ] + ZR o
2\ i 22 i
ZR = E;'Re z, ZI = - E;'Im z

The arguments of Jo and Yo are ale—yz, the arguments: of I° and Ko are ak/y2~l.

ZI is positive if zi is inductive,
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The ohmic loss on the antenna can be expressed as the integral of the

square of the absolute valuge of I(z) along z:

Ohmic loss = zf %‘- Re zi |I(z)|2 dz (5)
0

According to Parseval's formula, (5) can be written as the integral of the

square of the absolute value of I(5) along real &:

]
-l if-z 1
Ohmic loss = 5= Re z |TCg)|€ dg = 5 (Gyp + Gy3)
0
Thus GH' GH2+ GH3 can be identified as one component of the input conductance
reprcaenting the oﬁmic loss on the antenna. The other component, the radiated

power, is thus represented by G That is,

R‘
Radiated power = & G
P 2 R’
The above relation can alsoc be obtained by integrating the Poynting vector over
a large sphere.
APPROXIMATIONS
The integrals Il through 13 defined in (4) can be evaluated approximately

in the limit of small 2. provided the antemnna is "thin" in the sense that

A o= 2logd 1 (6a)

zi is said to be small in the sense that

2 2 .2 2
|© = Zp *+ 21 << % (6b)

Under condition (6a), the Bessel functipns in the integrands of I1 and I2 can be
replaced by their limiting forms for small arguments. Similarly, the modified
Bessel functions in the integrand of I3 can also be replaced by their small

argument counterparts since the major contribution to 13 comes from near y = 1,
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Therefore, under (6a), I1 through 13 can be expressed as follows:

1
2 ‘
(1-y ) dy
I, = “- (7a)
5{ [-yDr + 2%+ [(-vD0 () + 2,1

1
dy
I, = :
5[ [a-yDr + z1% [(-yHo () + 2,12

(7b)

dy
1, = (7¢)
3 lf [2-1ey0x) + 2,12 + 22

where 2
Q(y) = 2 -2y - log(l-y")

2
Q;(y) = 8 - log(y™-1)
Yy = 0.57721566
The logarithmic functions in (7b) and (7c) are further approximated by constants
such that log(l-yz) is replaced by log 52 in (7b) where 52 satisfies

(8,7 + 2%+ [5,(0 - 2 - log £+ 2,1% = &%+ 1)z|? (8a)

and 1og(y2-1) is replaced by log &4 in (7c¢) where §4 satisfies

€500 - log £ + 2,15 22 = %+ 1 |z|2, (8b)

If K is treated as a constant, the above two equations can be solved for
52 and £3 by iteration. Generally, one or two iterations aré good enough for

the purpose of caluclating Q2 and Q3 which are defined by

(8¢)

Qs(y) Q; = - log &,
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In the limit as both zR and ZI approach zero,

/By 22+ 22) - 2

log §, + log | 5 L]

-2Y

l (8d)

v/(K2+1) zi + Kzzi J
' ]

bl

log 8 log [

Since K appears only in the argument of the logarithmic fundtion, no critical
accuracy 1s required for it§ solution, The determination of K is carried out
in the Appendix, where it is foﬁnd to be approximately e,'or 2,71828... .
Up to this point the Q(y) functions in (7b) and (7¢) are replaced'by the
constants Q2 and Q3 respectively {(8¢c)], and no further apprdximation ;s
needed to carry out the integrafionso Note that as the logarithmic functions
replace the Bessel functions [from (4) to (7)1, equivalently an extra zero
is introduced in the denominator of (2). This extra zero is located near the real
axis though far away from y = 1. Therefore, strictly speaking, the limits of
the integral I3 in the form of (7c) should have been written from 1 to A, where
A 1s a constant not large enough to bring about the qontribution from the extra
zero but large enough to take into ;écount the contribution near y = 1l. But
after the approximation (8b) has been introduced, the extra zero is eliminated
and the precaution of writing A instead of ~ in the upper limit of the integral
(7¢c) becomes unnecessary.

The denominatorsof the integrands of 12 and I3 are polynomials. These two

integrals can both be transformed into the following form:

.____JL_____ =
Jap) = 2a 5 = — (9)
-1 + A 2 +At (t7+1
A 2, (£241)
A

where A and p are both real. This is integrable and the result is
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where

r

J(A,p) ;:{::f<1r(641+ 85,) = b logl

1/4

-1
r = (1+A2) cos(tag A)

1/4

-1
sin(t:an A)

b o= (1+a%) :

0 < tan-lA <

(E

-1, b
941 2 tan (P'r) » 0

IA

-1, b
2 tan C—-;) N 0

® ot

1A
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-7-

e

6

32

1

3(a,,0) - I(a,,8, )

41

1A

tA

(ptr) 2+ b2

(p-r)2

then be expressed in terms of J(A,p)

+ b

Z
I—3, D

ZQBZR 83

8 - 2y - log 52
2 - log £3

ZRj +‘ZIQ2

- )
Qg + n2

1/2
1+

[(Zgh 2D (Q5+ 7)) = (27 + 2,0,)%)

1/2
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In the 1imit as both Z_ and ZI approach zero, 12 and 13 can be exprgssed

R
as follows:
y/
- =L |
2Q2 ZR.-' 16Q2
I, =« e (6 + == log 1 (lle)
2 ZI 4Q2 . lz|2
20% 1 - qp2y
2
— 2
A+ 2q, z. 1603
13 o [6 - 0. log — ] (114)
20,2, 3 |z] :
where
1 zR n
0< 6= tan "(37) <35 -
I
Thus, zI
l - Sesmswm——
2Q Z 4Q
4 1 2, 2
Gyt T (T, [0+, W8Tl ]
1 - ———
QWig

1 21 Zp | 49
Gy gy 1m0, W8Tl

where the limiting forms of the Q's are given in (8c). It can then be concluded
that the ohmic loss on the antenna behaves in the same manner as 1/(log|lI|) for

z
small zi.

Although the foregoing approximations are intended for small IZI, numerical
checks show that (1la) and (1lb) are good approximations for (4b) and (4c),
respectively, up to ZR ~ 10,

The I1 integral in the form (7a) is of different character from 12 and 13;
that is, unlike the latter two, Il is integrable in the limit as Z_= ZI approaches

R
zero. This limit is exactly the input conductance of a perfectly conducting,
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infinitely long antenna if it is multiplied by the constant Aﬂ/co. Let

1
Il = j. (lfyz) qy
0 [y m1%+ 1(-yDe, (012

then

1 1
-/ y'éy 7Y / 2
o (") [r% (c-10g(1-y%) )2 oumwﬂmmmwn

The first integral can be integrated exactly and is equal to 1/2C where
C=Q - 2y. The second integral is obtained approximately by first neglecting

the term ﬁz and then expanding 1ﬁ,powers of 1/C. It is approximately equal to

2
i log 2 + -1-5- [(log 2)2+ Zf m’?—'z)dx] .
A
1

Thus

The following two facts should be noted: (1) I1 approaches Io in the
limit of vanishing [Z| and (2) the main difference between the integrand of
I, and that of I_ for small |Z| is in the small region fromy = /T—:_EI to
y = 1, where 51 is a small quantity of the order of IZI/C. Thus, Il can be

expressed as follows for small |Z|:

v 1“‘6-;

- [ = -y gy .
Yoog tavhn 1avh (e-tesyhy 12

This can be integrated by following the same steps of integration as for Io°

The result is

= _1._ 1m gt S S Y N T __ Ve
;1 [tan™ c -tan o= logEl] log(l+ 1-¢ )+ c [log(1+v1 )]

Vl-&l

f lo xZ-x dx (12a)
1

[
w
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Here El is treated as a constant. Since El appears only in the arguments
of the logarithmic functions, its value cannot critically affect the value of I1
given in (12a). As mentioned, &, is of the order of |Z|/C for small |z|, which
is a property similar to 52 and €3 defined in (8). Numerical checks show that
if the value of Ez is used for El’ I1 in the exact form of (4a) is represented

satisfactorily by the approximate form in (12a) up to ZRf 1, For Z_< 1, (12a)

R
can be written as 1
log(+=
I--]-‘ El 1
1 2 =7 + =3 log(l + Vl—El) (12b)
c(C + logE—9 C
' 1

For ZR in the range of 1 to 10, Il’ 12, and 13 are of the same character.
Since the latter two are found to be well approximated by the forms of (lla)
and (1l1lb) up to ZR- 10, the same thing can be done for I1 in the range

1 <2Z, <10. Thus,

R
- 2
I -f : dy — 5 _f y dy ‘
Lortayhmez Pyt e? § o tasyh ez )t aeyho )2

The first integral is exactly 12, the second integral can be transformed into the

form of (9) if the variable y is changed to 1/z. The result is

Py 1 Qp2p=2.7
Il - Iz- 3 sz 77 J( 5 ,pl) for 1 < ZR < 10 (12¢)
R I al
where
" 2 2 1172
b, = (Zg+m) + (Q,+2;) ;
{

‘n(ZR+w) + Q2(Q2+ZI);

2 ‘
a] = m(Zptm) + Qu(Q,+2p).
Equation (1l2¢) can be checked numerically against the exact form of (4a). It is

found to be in good agreement with the latter. Furthermore, (12b) and (12¢)

overlap near ZR- 1.
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Fig. 2 shows some numerical resulte. The input conductance G together with
GR (radiated power) and GH (ohmic loss) are plotted against the normalized internal
impedance zR which ranges from 10 to 10-5 with zI- 0. This corresponds to an
antenna formed by a thin layer of conductive coating. If a good conductor is

2 3

used and skin effect exists, Z;= Z, and they are of the order 10°¢ to 10°°. This

R
case 1s also shown graphically in Fig. 2, The results show that in the case
ZR >> ZI, the ohmic loss is of the same order of magnitude as the radiated
power unless ZR is extremely small (say, less than 10-6)° When skin effect 1is

significant ZI- ZR’ and GH is only about one-half as great as when Z.= 0, so

I
that the input conductance is quite different from that of a perfectly conduc-

ting antenna.

CONCLUSIONS

The following conclusions can be drawn from the foregoing calculation:
(1) The infinite antenma has quite different properties when its internal imped-
ance is zero than when zi is non-vanishing, even when zi is quite small. (The
input impedance of the former has been obtained, for example by Papas [3]; the
current distribution has been worked out, for example by Kunz [4].)
(2) The present theory may be verified experimentally with an antenna of finite
length provided the internal impedance is not toc low.
(3) In the theory of the very long antenna the internal impedance is not negli-
gible for all practically available metals. The current distribution is gfeatly
modified when zi differs from zero. This effect shoﬁld be more apparent as the
antenna becomes longer or as the impedance per unit length becomes larger. The
above statement is illustrated by the qualitative sketch of Fig. 3. The initial
slope of the loss curve of a 1oﬁg antenna is determined by the antenna length; a

perturbation method may be used to calculate it. For larger zi, the loss curve

¢ S
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joins the curve of the infinitely long antenna with the same z1 since the current

on the long antenna should be attenuated £o such a small quantity at the ends

that any increase of the antenna length would not affect the current distribution,

But, for moderate zi. or for very long antennas, the behavior requires further

atudy.
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A-1
APPENDIX
This appendix is devoted to the estimation of the constant K in the approxi-
mations associated with (8). It is assumed that ZI- 0. The problem is to
determine K so that the logarithmic function can be replaced by a constant

determined by (8) without excessive error. The question is actually equivalent

to approximhting

dx
Yl+2'x [xz(c - log x)2+ 1]

(a-1)
0

L]

dx
Yil+z'x (x2Q2+ 1)

with Q = C - log X X (C - log x ) = K,

The integral (A-1) is essentially 13 in (7c); z' is proportional to ZR.

C corresponds to {i, and x is proportional to yz-l°

Take the difference of the above two integrals

[ ] o

A = f dx_ dx
(x [C- log x] +1}V1+zax {x Q +1}V

® o«

dx dx
- - (A"Z)
f {x [Q= log ] +l}»’l+z X 6[ Q +1H1+z X
Xa

A = f - dx - f dx
0 {(32Q2+1)-2x2Q log i’}vl+z”x 0 (x202+1)¢1+z'x
o

Expand the first integral so that the first term cancels the second integral,

and the result is
2 X
® x log —
%o
A = 2Q dx (A-3)
Yi4z'x (x2Q2+1)2
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X, is determined by K as defined in (A-1). K is to be chosen so that the right

hand side of (A-3) is zero., let t = xZsz

[ -]
/e dt log &= = 0. (A-4)

0 (i+t)2/i+z'V/E/Q K

It is difficult to integrate (A-4) in general, but it is known for two special

cases:

ase 1. z' =0

f/t_dtz 103% = 0 (A-5)
0 (1+t) K
Let © b .
Fl(-r) = _.t___‘ls_;;__ (A—G)
0 (14t)
' s T log t
L NOWE j &_dtz log t e (A-7)
0 (1+t)

Therefore, (A-5) is equivalent to

)
-
Fl(O) - Fl(0) log K 0.

The integral (A-6) is known [Ref. 5, p. 9]

Fl(T) = (1 +-%9n sec 7T

and 2 u
log K™ = p) - 2 K = e = 2,71828
Case II. z' +=
-  1/4
f R (A-8)
{(1+t) K

0



A=3

o %-+1
Fy(v) = ft <t
0 (1+t)
F, (0)
2 2
log K" = —=
Fz(o)

Fz(r) is also known [Ref. 5, p. 9]

Fo(v) = (14 %Dﬂ sec m(1 - %9, F,(0) = %./E

' T
Fo(0) = /2 (1 - P

log K2 = 4 -3, K = 1.536.

5

Thus, it seems plausible to choose K equal to e = 2.71828 when ZR- 1077 to 10

in the numerical calculations.
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Correction to

RADIATED POWER AND OHMIC LOSS OF THE
INFINITELY LONG CYLINDRICAL ANTENNA

Liang=Chi Shen and Tai Tsun Wu

Gordon McKay Laboratory, Harvard University
Cambridge, Massachusetts

In the above report the authors would like to make the following corrections:
In (3), (tz-kz) in the second integral should be changed to (kz- cz). Conse-
quently zI in (4c) and in (7c) should be preceded by minus signs. Subsequent
calculations are valid except that for 13 when ZI# 0. Thus, (8b) is valid for

ZI- 0 only; and in (8d), the limit of log 53 should be changed to

log £3-a log(KzR/Q) for ZI = 0,

The limit of log 52 is correct. The expression (1llb) and (1lld) for I, and the

3

expresasion for GH3 below (11d) are correct for Z.= 0 only. The last sentence

1
above the Conclusion should be deleted.

What remains to be done is to evaluate 13, or equivalently, GH3' for ZI# 0.

<< 1 is studied since Z.= Z_ << 1 for metal as.

Only the case when 0 < Z R T “r

132

a result of skin effect.

It is learned from previous calculations that I, as defined by (4c) can be

3
approximated by (11b) for ZI- 0 if the conditions (6) are satisfied. Let

A(ZI) = 13(ZI) - 13(0)
f [
1

Note that the contribution to A(ZI) is mainly from a small region near y = 1,

1 1
- dy (c-1)
(P02 1% 25 (G115 24

AN

l
|
S

The logarithmic function Q3(y) may then be replaced by a proper constant:



' '
Q3(Y) = Q3 = Q- 108 53 (C-Z)
Under the condition that ZI < ZR << 1, E; can be approximately chosen to be
Z /9 since the main contribution to A(Z ) is from the region 0 < y2-1 53
A(ZI) is readily obtained in terms of the J-functions defined in (9)

when Q3(y) is replaced by Q;, and the result is

Z Z
=, &,
- 0B By Q
A(ZI) 3 ' - - (c-3)
22048, 220,
where , zZ; 1/2
83 = (1+ ) .
Q3
zR
Therefore J (6—" 1)
3
I, = A(Z)) + . (Cc-4)
3 I ZZRQ3
And for 0 < ZI < ZR << 1, and also under the conditions (6),
1 n 1 =
1, = [ - tan (-—-)] +
3 v "2 2z Q 2
ZZRQ3 R*3
Z
= { L [— - (—)] + =} (c-5)
%3 * T 20 4Q3
2 7,1 .1 1% 1 1
G, = —C'{E(—,+6-)+(tan 'i;-)(Q—-'—,)}- (c-6)
Thus, GH does not change significantly as ZI is changed from 0 to ZR’ as long

as ZR << 1. All above approximations have been checked by numerical integrations.



Fig. 2 and Fig. 3 have been corrected and are shown in the following
pages. Fig. 4 shows the comparison between the approximate formula (C-5)
and the numerical integration of the exact formula (4c) for Gyqe The

agreement is found to be very good.
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